
NASA Contractor Report 189s50

ICASE Report No. 91-79 p3q

ICASE

OPTIMAL PROCESSOR ASSIGNMENT FOR

PIPELINE COMPUTATIONS

David M. Nicol

Rahul Simha

Alok N. Choudhury

Bhag|rath Narahari

Contract No. NAS1-18605

October 1991

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

National Aeronautics and
Space Administration

I._ngley R_reh Center
Hampton. Virginia 23665-5225

p.,

'_ ,,0

I r,-- aO
U-,I"

O- CO

_D
O-

mO

C..J

u. u'_
u

c_Z
O0

(/) l--
uj<
uf'--
O_

0
.-JU

_w

0 uJ l,,.

u')_v)

I Z ,,.,.

I Z ._.._

',O

¢"3

OPTIMAL PROCESSOR ASSIGNMENT

FOR PIPELINE COMPUTATIONS

David M. Nicol* and Rahul Simha

College of William and Mary

Williamsburg, VA 23185

Alok N. Choudhury

Syracuse University

Syracuse, NY 13244

Bhagirath Narahari

George Washington University

Washington, DC 20052

ABSTRACT

The availability of large scale multitasked parallel architectures introduces the following

processor assignment problem for pipelined computations. Given a set of tasks and their

precedence constraints, along with their experimentally determined individual response times

for different processor sizes, find an assignment of processors to tasks. Two objectives interest

us: minimal response given a throughput requirement, and maximal throughput given a

response time requirement. These assignment problems differ considerably from the classical

mapping problem in which several tasks share a processor; instead, we assume that a large

number of processors are to be assigned to a relatively small number of tasks. In this paper

we develop efficient assignment algorithms for different classes of task structures. For a p

processor system and a series-parallel precedence graph with n constituent tasks, we provide

an O(np 2) algorithm that finds the optimal assignment for the response time optimization

problem; we find the assignment optimizing the constrained throughput in O(np21ogp) time.

Special cases of linear, independent, and tree graphs are also considered. In addition, we

also examine more efficient algorithms when certain restrictions are placed on the problem

parameters. Our techniques are applied to a task system in computer vision.

*Research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in Science
and Engineering, NASA Langley Research Center, Hampton, VA 23665-5225.

5

1 Introduction

In recent years much research has been devoted to the problem of mapping large computations onto

a system of parallel processors. Various aspects of the general problem have been studied, including

different parallel architectures, task structures, communication issues and load balancing [11, 16].

Typically, experimentally observed performance (e.g., speedup or response time) is tabulated as a

function of the number of processors employed. We are particularly interested in tabulations of

response time, which we will refer to as response-time functions. Our work is also motivated by the

growing availability of muItitasked parallel architectures, such as PASM [37], the NCube system

[18], and InteI's iPSC system [7], in which it is possible to map tasks to processors and allow parallel

execution of multiple tasks in different logical partitions.

In this paper, we consider the problem of optimizing performance of a task structure on a

parallel architecture, given a large supply of processors, and the experimentally determined response

time functions for its constituent tasks. The task structure describes the sequencing of various

computational activities (tasks) that are to be applied to each of many data sets; the data sets

themselves are pipelined through the task structure. We refer to this class of computations as

pipeline computations. This problem arises in data parallel applications such as the computer

vision example we consider in this paper, when individual tasks, e.g. a fast Fourier transform,

are highly parallelizable. Unlike prior treatments of the mapping problem we are interested in

the case where there are many more processors than tasks. Rather than ask which tasks must

share a processor, we ask how many processors each task should be allocated. We are interested

in both the response time of the task structure on one data set, and in the throughput (data sets

processed per unit time). We consider the dual problems of minimizing response time subject to a

throughput constraint, and maximizing throughput subject to a response time constraint. These

problems are complimentary, in the sense that allocation to increase throughput may have the side

effect of increasing response time, and vice versa.

Under the assumption that the constituent task response time functions completely characterize

performance, we show that p processors can be optimally allocated to an n-node series-parallel task

structure in O(np 2) time. We study separately the special cases of linear, and tree structures and

show a O(np 2) procedure; we also consider response time function characteristics such as convexity

which are exploited to achieve even more efficient algorithms. Our methods are applied to the task

of motion estimation in a computer vision system; we present several experimental results for both

the response time as well as the throughlmt problem.

The problem of mapping workload to processors has attracted a great deal of attention in

the literature, leading to a number of problem formulations. One often views the computation in

terms of a graph, where nodes represent computations and edges represent communication; for an

example, see [2]. In this case, mapping means assigning each node (task) to a processor. One view

of the mapping problem is that the computation graph represents a distributed program, with a

serial thread of control. Tasks have different affinities for different heterogeneous processors; the

problem is to assign tasks to processors so that the total sum of execution times (of all tasks)

and communication costs is minimized. Fundamental contrilmtions to this problem are made in

[4,39,41]. However,theobjectivefunctionfor this problemdoesnot captureanyparallelismamong
the tasks. Anothermappingproblemformulationviewsthe architectureasa graph whosenodes
areprocessorsand whoseedgesidentify processorsableto communicatedirectly. The dilation

of a computation graph edge (u,v) is the minimum distance (iu the processor graph) between

the processors to which u and v are respectively assigned. The dilation of the graph itself is the

maximum dilation among all computation graph edges. Dilation is a measure of how well the

mapping preserves locality between nodes in the mapped computation graph. Results concerning

the minimization of dilation can be found in [8, 19, a2, 36], and their references. Yet another

formulation directly models execution time of a data parallel computation as a function of the

chosen mapping, and attempts to find a mapping that minimizes the execution time. Workload

may again be represented as a graph, with edges representing data communication. Nodes are

mapped to processors in such a way that each processor's workload is approximately the same, for

example, see [1, 5, 24, 3a, 35].Formulations using simulated annealing or neural networks attempt

to minimize an "energy" function that heuristically quantifies the cost of the partition [6, 17].

Other interesting formulations consider 1napping highly structured computations onto pipelined

multiprocessors [25], and mapping systolic algorithms onto hypercubes [22]. The problem we study

is distinctly different than these, in that it seeks the assignment of nmltiple processors to a task,

rather than multiple tasks to a processor.

Recently, some studies consider the scheduling of tasks on multitasked parallel architectures

where each task can be assigned a set of processors. The objective in such work, for example

ill [3, 13, 27], is to find a schedule that minimizes completion time. A flmdamental difference,

between the processor assignment problem studied in this paper and the above scheduling problems,

is that scheduling formulations allow tasks to be queued or sequenced. In contrast, the nature

of pipeline computations recommends assigning at least one processor to each task: executable

images which would be swapped into main memory for eacli data set under scheduling, would

remain in main memory under our a.ssignment formulation. The problem of assigning processors

to a set of independent tasks where each task is a chain of modules is considered in [10]. This

(lifters from our problem, as neither response-time functions nor task precedence is treated. In

other formulations, each task requires a specific number of processors; in this case, the problem of

scheduling tasks on a partitionab]e hypercube or mesh connected :architectures has been studied

[9, 1.1, 23, 29]. Pipeline computations are studied in [25, 38]. In [38], heuristics are give}_ for

scheduling planar acyclic task structures and in [25], a methodology is presented for analyzing

pipeline computations using Petri nets together with techniques for partitioning computations. We

have not discovered treatments that address optimal processor assignment to pipeline computations,

although our solution approach (dynamic programming)is related to those in [4] and [41].

This paper is organized as follows. Section §2 introduces notation, and formalizes the response-

time problem and the throughput problem. Section §3 develops some preliminary results about

response time functions that will be used throughout the paper. Section §4 closely examines two

response-time problems associated with linear arrays of tasks, and Section §5 applies these results to

tasks structured as trees or more general series-parallel grN_hs. Section §6 shows how the problem
. :::7 . : :

Number of processors
tasks 1 2 3 4 5 6 7 8

tl 29 16 11 9 7 6 4.5 4

t2 40 21 14 11-- 8.5--_-8 7 5

t3 10 5.5 3.4 3 2.5 2 1.5 2

t4 20 12 10 9 8 7 6 5

ts 15 10 8 5 4 3.5 3 2.5

Table 1: Example of Response time functions

of maximizing throughput subject to a response-time constraint can be solved using solutions to

the response-time problem. Section §7 discusses application of our techniques to actual problems,
and Section §8 summarizes this work.

2 Problem Definition

A pipeline computation is a quadruple 7) =< K, T, F, G > where

• K = {1,...,p} is a set of identical processors.

T = {tl, ..., t,_+l} is a set of tasks labeled such that tl is always tile first task and tn+ 1 the last

task executed on each data set. We will assume that the last task tn+l is a "dummy" task

that requires no processing--it is used for convenience of notation in the graph G, described
below.

F = {fl, ..., f,_+l} is a collection of response-time functions fi : I(--. _+ for each task. For

notational convenience we assume that fi(0) = oc for all i = 1,..., n. We also assume that

f,_+l(x) = 0 for all x, so that no processors need ever be assigned to the dummy task. It

is often convenient to think of the discrete function fi as a table, a format we shall use in

this paper. Later, we will also use F to denote the response time functions for a whole task
structure.

• G = (T, E) is a directed acyclic graph (DAG) describing the precedence relation for the tasks

in T. Thus, (ti, tj) C E if ti immediately precedes tj.

An example of response time table for n = 5 and p = 8 is shown in Table 1. Each row of the

entire table is a response time function for a particular task. In the course of the paper we will be

constructing examples to demonstrate the use of our algorithms for various graph structures; these
examples will use the response time functions in this table.

Our definition of a pipeline computation extends earlier definitions [25, 38] to include the em-

pirically determined response-time functions. Observe that fi(k) may include the communication

costs inherent in executing ti on k processors, as well as the communication costs ti may suffer

==
_=

=
2--

communicating with predecessor and/or successor tasks in T. This paper assumes that all perfor-

mance dependencies on communication are captured in the response time functions. Our problem

formulation does not therefore attempt to deal with any issues related to "matching" the task

structure topology to the architecture topology. It implicitly assumes that performance is indepen-

dent of which processors are assigned to a task. These assumptions are reasonable when the cost

of communication is largely independent of the distance between communicating processors (as is

the case with the Intel iPSC/2 [7]), and the communication bandwidth is sufficiently high for us to

ignore effects due to contention between pairs of communicating tasks. They are also reasonable

for compute-bound applications, for which load-balancing of the type we study is a major concern.

The computer vision application we later consider is compute-bound.

Let A : T --+ 77 denote a feasible assignment of processors to tasks such that _=_ A(t_) <_p and

A(ti) _> 1 for all ti where 1 < i < n. Observe that we do not require all p processors to be assigned,

as it is possible that increasing the number of processors used actually hampers performance. In

addition, observe that each task must be assigned at least one processor; this condition clearly

differentiates between an assignment and a schedule.

For a pipeline computation 7:'-and assignment (mapping) A, define the following:

• S(7), A) = max_<i<n f_(A(ti)), the largest response time, under A, among all tasks.

• A(7),A) = S(P, A) -1. We will later argue that this quantity is the maximal throughput

under assignment A, i.e., the maximum rate at which successive data sets can be processed

by the task system.

• L = {l[l is a path in G starting from tl ending in tn+l }. L is thus the set of all complete

paths through G. We will write each I E L as a set {il,...,ik}, il = 1,ik = n+l, 1 < k < n+l,

with l consisting of the edges (ti_, ti_), ..., (ti___,tk).

• t2(7 o, A) = maxz_L _iet fi(A(ti)), the "length" of the longest path through G. R(P, A) is

thus the total time required to execute one data set, i.e., the response time.

With these definitions we formulate two problems.

Response time problem:

Given a pipeline computation T'-and throughput requirement A, find an assignment

A* such that A(70, A*) > ,_, and R(79, A*) <_ R(7 _, A) for every feasible assignment

A which satisfies A(79, A) > A.

We are also interested ill determining how the optimal response time R(79, A*) behaves as a

function of p, the maximum number of available processors. In other words, we are interested

in obtaining the response time function for the entire computation 79: the values of R(T), A*) for

different values of p. We will call this 79's optimal response time function, or sometimes simply the

response time function (the optimality being understood).

Zl

Throughput problem:

Given a pipeline computation 7) and response time requirement p, find an assignment

A* such that R(7 _, A*) _< p, and A(7), A*) _> A(7), A) for every feasible assignment

A which satisfies R(7), A) _<p.

The response time problem arises when we have a steady stream of input data arriving at a fixed

rate and the system must complete processing each data set as soon as possible. The throughput

problem arises when there is flexibility in the amount of time it takes to process one data set

but the throughput must be maximized to handle high input data rates. Both conditions appear

in real-time applications. Our approach will be to focus first on the response-time problem, for

different task structures; in Section §6 we then show how solutions to the response time problem

can be used to solve the throughput problem.

3 Preliminaries

),Iuch of this paper is devoted to the issue of decomposing a large task structure into a set of smaller

task structures and constructing a response time function for tile large structure from response time

flmctions for the smaller structures. This is accomplished by first separately studying algorithms

for handling simple task structures such as tasks in series and tasks in parallel. Then more complex

task structures such as trees and series-parallel graphs are treated by decomposing the optimization

procedure to handle series and parallel components of the overall task structure.

Given x (x _< p) processors and a task structure consisting only of two tasks tl, t2, with response

time functions fl, f2, we wish to determine y such that assigning y processors to tl and x - y to

t2 satisfies the throughput requirement and minimizes the overall response time. If we tabulate

this minimal response time for each value of x, then we obtain a response time function for the

aggregate of tl and t2. Note that this function captures optimality and is thus an optimal response

time function. In general, given a set of task structures {7)1,..., 7),,_), where forj = 1,..., m, 7)j =<

K, Tj, Fj, Gj >, we extend the notion of response time function for a single task to a response time

function for an entire pipeline computation; let Fj : 77 _/R be the response time function for 7)j,

i.e., Fj(x) is the optimal response time achieved for 7)j using x processors. Suppose also that we have

an m-node graph _ that describes a precedence relation on {Pl,. •., Pro}. We may view each 7)j as

an arbitrary task, even though 7)j may itself have a complex subtask structure. \,\re wish to construct

the optimal response time function for the structure O = (I(, {7)1,..., 7)_}, U_=I {Fj}, @, given a

throughput constraint ,\. We accomplish this by solving a number of response-tinle problems: for

every x ¢ [1, p] processors, we determine the minimal response time h(x) achievable by allocating no

more than x processors among the task structures 7)j in such a way that the throughput requirement

is satisfied, h(x) becomes the optimal response time function for Q, which now can be treated as

a task itself with a known response-time function.

We are interested in properties of optimal response time functions that are conserved through

such an aggregation procedure. Two questions are particularly important: (i) what is the minimum

!

!

7

|

|

number of processors needed for Q to meet the throughput constraint, and (ii) what is the maximum

number of processors that Q should be allocated? The answer to the first question is straightforward

whereas the answer to the second requires additional analysis.

First consider the throughput constraint question. Let u_(Toj) denote the minimum number of

processors Pj must be allocated in order to meet throughput constraint A. For a single task ti,

l.x(ti) denotes the minimum that must be assigned to task ti, i.e, u(ti) = minkeT/{k : fi(k) < A-l}.

Observe that any distribution of tasks to Q must assign at least u.\(7-)j) processors to 7)j if Q is to

meet the throughput requirement. As this is true for each 7)j, it is clear that

___ (1)
j=l

This is true regardless of the structure of Q. It is also true that if every 7)j is allocated u:,(Taj)

processors, then Q's throughput is at least),. One need only perform an easy induction on the

number of nodes in the precedence graph to establish that Q's throughput is the inverse of the

maximal response-time among all tasks in Q. This shows that tire inequality in equation (1) can be

reversed, thereby hnplying equality. Thus, the rule for computing minimal processor requirements

for Q is simple, and general: add the minimal requirements of Q's constituent tasks.

To answer the second question, especially when Q is complex, we need to manipulate the

functions so that certain conditions arc satisfied. For a response time function f(x), define the

reduced response time function f(x) as:

f(x) = rain {f(y)}
O<y<z

Note that f is monotonically decreasing (non-increasing), whereas f need not be, and can be

defined both for single tasks as well as for whole computations by using tlle appropriate response

time function. In several applicatiol_s, increasing communication costs when a large number of

processors is used can force response times to increase with increasing x. In general, we would

like to treat response time functions that behave arbitrarily (exhibit several local minima) with

increasing x. The adjustment above will prevent assigning "too many" processors. A processor

assignment x is called reducible if 3y < x : f(y) < f(x). It is otherwise irreducible. For obvious

reasons, we seek irreducible assignments. In tile example in Table 1 the response time for task ta,

i.e., f3(x), can _be reduced while a!l othel: functions cannot. After the adjustment, we have the

rednced response time function with f3(8) = 1.5 which assigns only 7 processors to task t3.

We next derive some properties of reduced response time functions that we will later use in our

algorithms. Consider first a simple case of two elemental tasks tl and t2 and their aggregate, s.

Suppose fl(x) and f2(x) are the response time functions for tl and t2 and I[(x_, x2) is a real-valued

function increasing !n both arguments: Define

f,(x) - rain {II(fa(y), f2((x - y))}. (2)
O<y<x

IIere fs is the optimal response time function of the aggregate task s, written as some function of

the response time functions of tl and t2. In this paper, //is usually a sum (for series tasks) or a

maximum (for parallel tasks). Defne

L(x)= rain {tI(?,(y),/_(x-y))}. (3)
-- O<y_x

We next show that:

Lemma 3.1 For all x = 1,...,_,, L(x) = L(x).

Proof: \Ve first show that fs(x) is monotone decreasing in x, and therefore __f_(x) is already

irreducible. Since fl and]2 are monotone decreasing and H is increasing, for any y

tf(]_(y), £(x - y)) >_ n(£(y), L(x + 1 - y)).

rain {H(f,(y),]_(x+ _- y))},rain {H(fl(y),]_(x-y))} >- O<y_<x
o<y<_x

Therefore,

that is, f_(x) is decreasing.

Next, for any x :> y > 0, fl(Y) <_ A(Y) and A(z - y) <_ f2(z - y). Thus

and hence

II(fl(y), ?:(_- y)) _<H(/I(y), f:(z - _))

min {H(fl(y),]2(x - y))} < min {II(fl(y), f2(x - y))} = f_(x).
0<y<_ -- O<y<_x

{f_(y)} for all x.

As this is true for all x = 1,...,p, it follows tha.t

min {_fs(y)} < min
O<y<_x -- O<y<x

But, the left-hand-side of the above is simply _f_(x) (by definition); the right-hand-side is

L(x) (also by definition), showing that]" (:c) <_ f_(x) for all x = 1,...,p.

Finally, we show _f_(x) > fs(x). For the sake of contradiction suppose _Xo: f_(Xo) > .f(xo).

Then

min {II(fl(z),f2(xo- z))}min min {H(fl(w),f2(y-w))} > O<z__zo
0<y<xo O<w<_y

min {If(/,(_),f_(y- _))} > rain {t_(f,(z),?_(_o- z))}. (4)
O<w<y 0<z_<xo

and thus,

Yy _< x0 :

=

7

_-__-

=___
_-= •

Z--
i

[]
!
!

=

=-

Next let the minimum of tile right side of inequality (4) be achieved at z = zo with value

lt(]l(zo),]2(Xo - Zo)) = tI(fl(a), f2(b))

with fl(z0) = fl(a) and f2(Xo -z0) = f2(b) for some a <_ zo,b <_ Xo-Zo and a+b <_ xo. Note

that a and b are obtained through the reduction of fl and f2. We may also rewrite inequality

(4) as

Vy < Xo : rain {H(fl(w),f2(y- w))} >
-- O<w<y

But, with y = a + b _ xo above, we get

rain {tt(/l(w),f2(y-w))} _< tI(f_(a),f2(b)) =
O<w_y

which contradicts (5) and therefore,)_(x) = f_fz).

Ir(L(zo), f (xo - zo)). (5)

L(o-

Thus, we have shown that no information is lost in reduction, since the desired optimal response

time function of the aggregate f, is obtained using the reduced response time functions of the

constituent tasks. This is an important point: we will build up response-time functions for complex

tasks using increasing functions H, and minimization equations of the form shown in equation (2).

We have just shown that if we start with reduced response time functions, then we will construct

reduced response time functions, and the assignments associated with them will be irreducible.

The lemma can be generalized through an easy induction argument for muItiple, complex tasks.

Lemma 3.2 Let Sl,...,sk be k complex tasks with optimal response time functions ga,...,gk and

H(xl,...,xk) be an increasing function in each argument. If s is the task that represents the

aggregate of tasks Sl,..., sk with reduced optimal response time function h(x) and defining

l__(x) = rain

Yl +...+Yk----x

then ft(x) = h(x).

Remark 3.1 If the irreducible minimums of the functions j1,..., ?_]koccur at xl,..., xk, then the

irreducible minimum of h__,Xo, satisfies Xo <_ _,_=1 xi.

The last remark implies that when constructing tA we may restrict our attention to only those

assignment vectors (Yl Yk) for which k-,..., _i=l Yi <_ _=1 xi. This will result in improved execution

time for our optimization algorithms when k_i=x xi < O(p). Next, we begin our presentation of the

a.lgorithms by first treating the two simpler task structures, linear series tasks and linear parallel

tasks.

=

4 Linear Task Structures

Linear task structures are interesting both because many pipelines are simple linear chains [25] and

because chains appear as tasks in more complex task structures. We examine two different ways of

assessing the cost of a linear chain. The first is when the chain is a linear pipeline, and the response

time function is the sum of the response times of each of the 'stages' [25]. This is cMled a series

task structure. The second is when the constituent tasks execute in parallel on different aspects

of the same data set, a parallel task structure. For both problems we show how to construct the

optimal response time function for the aggregate task, and, for every q = 1,...,p, how to recover

the optimal assignment of q processors from information computed as the response time function

was constructed.

In the treatments of both problems we consider sl,..., s,_ to be the set of m constituent tasks,

and gl,...,gm to be their respective response-time functions. Let s be the aggregate task whose

optimal response time function h(x), 0 < x <_ p, we are interested in computing. Note that each

constituent task sj may already be an aggregation of the elemental tasks t_. Our immediate goal is

to construct the overall reduced response time function for processors in the range [1,p] and also,

to recover the optimal assignment when required.

4.1 Series Tasks

First we describe an algorithm that constructs the optimal response time function h(x) for linear

task structures when each function gi(x) is convex (see [30], pp. 445-454)in x, i.e., when the

efficiency of parallelism is decreasing (see pp. 217 in [16] for an example). We later treat the

general case.

Let the assignment be recorded in [(s,x) = (x_,...,xk) where zj denotes the number of pro-

cessors assigned to task sj; also let ha denote the response time function created by our algorithm.

As a first step, we must ensure that every task si is allocated enough processors u,_(si) to meet

the throughput constraint. For each i = 1,...,m, let xl = ua(si) be this initial assignment. Of

course, the algorithm terminates at this point if _1 xi > p, because no feasible assignment exists.

Note that this first step does not require the presumed convexity of each gi. Let t = _=1 xi;

we set ha(x) = oc for all x < t to reflect an inability to meet the throughput requirement, set

ho(t) = _'_=1 gi(xi), and let x = t. Next, for each si, compute d(i, xi) = gi(xi + 1) - gi(xi), the

change in response time achieved by allocating one more processor to si. Build a max-priority heap

[20] where the priority of si is Id(i, xi)l. Finally, enter a loop where, on each iteration,

• The task (say sj) with highest priority is allocated another processor.

• Let a denote the number of processors previously assigned to sj. Compute ha(x) = ha(x -

1) + d(j,a), and set I(s,x) = (xl,...,xj + 1,...,xk).

• Increment x.

• Compute sj's new priority, and adjust the priority heap accordingly.

E

We iterate until all available processors have been assigned, or the top element of the heap is non-

negative, i.e., d(j, xj) is non-negative. If the top element becomes non-negative when x = y, then

we assign he(z) = ha(y- 1) and Z(s,z) = Z(s,y- 1) for all z = y,...,p.

Each iteration of the loop allocates the next processor to the task which stands to benefit most

fl'om the allocation. When the individual task response functions are convex, then the greedy

response time function ha it produces is optimal, and is irreducible.

Prop. 4.1 suppose th,t a (k) eo ,ex over x e [1,p], for all i = 1,...,n. Then for all • [1,p],
he(x) = h(x), the optimal response time function. Furthermore, ha(x) is irreducible.

Proof: Clearly, each task si must receive at least u_(si) tasks in order for the throughput

condition to be satisfied. Recalling that t = _im=l U.k(Si), it is clear that hG(x) = h(x) = oo

for all x 6 [1,t-1]. Now consider x = t. For allj = 1,...,p-t the remainder of the algorithm

should assign "the next" j processors in such a way to obtain the maximM possible decrease

in response time given j additional processors. The proposed algorithm does exactly that.

D = {d(i, x_+j)ll < i < n, 1 < j < p-x} is the set of all possible changes for the remainder of

the assignment. For every j = 1,...,p- t, the maximal decrease is obtained by choosing the

j largest (in magnitude) elements of D. Since each gi is convex, Id(i, zi + Jl)I <- Id(i, xi + J2)]

for j_ > j2 (see [30], pp. 453-454) and so the j elements with largest magnitude in D are

selected as given in the algorithm.

The irreducibility of hc follows from its construction.

Tlie complexity of this algorithm is low. The throughput condition is checked in m steps.

The initial priority heap is constructed in O(mlogm) time; the highest priority heap element is

found in 0(1) time and each heap adjustment requires only O(logm) time using standard heap

algorithms. Thus the overall complexity is O(mlogm) + O(plogm) = O(plogm). This is an

example of how the structure of the response time function (convexity) can be used to obtain

highe r algorit!tmic efficiency than might, otherwise be achievable, as we will see below for general
response time functions.

A different approach, based on dynamic programming, is needed when the task response time

functions are not convex. In fact, we anticipate that this condition will be the norm when con-

sidering chains whose tasks are themselves aggregates of other tasks. Since convexity need not be

preserved in aggregation, we must turn to a slightly more complicated algorithm. The new approach

has a higher complexity--O(mp2)--but it permits completely general response time functions. We

will show that certain algorithmic efficiencies are possible when bounds on the least minimums are

known ahead of time,

For any j = 1,...,m, we can view the subchain st,...,sj as a (larger) task itself. We will call

this task Sj, and compute its optimal response time function: for x = 1,...,p let G_(j,x) be the

minimal response time of Sj, subject to throughput constraint A, achievable when no more than

10

I

x processors are allocated to it. Tile function G)_(j, .) is thus Sj's optimal response time function;

in computing this function we will simultaneously check the throughput constraint--hence the

subscript _. Using the principle of optimality[12], we may write a recursive definition for G_(j, x)

as follows.

(DO

G_(j,x) = _:(x)
:::in {_j(i) + G_(j - 1, x - i)}

if ua(sj) + "a)_(Sj-1) > X

if j = 1 and ua(s:) _< x
otherwise.

(o)

These equations define response tin:e to be oc whenever insufficiently many processors are allocated

to sj or Sj_: to meet the throughput constraint; we define u_(So) = 0 as a boundary condition.

Observe that/t(x) = G_(m, x). Note that the II function (Lemma 3.2) is the 'sun:' operator here,

in the third part of the equation.

The dynamic programming equation is more intuitively explained by reading it 'top down'.

Suppose we h_d somehow computed the response time table for the first j - 1 tasks (the 'large'

task Sj_:), i.e., G;_(j, x). Then, given x processors to distribute between tasks 8j and Sj_:, we try

every combination subject to the throughput constraints: i processors for sj and x - i processors for

Sj_:. Since the equation is written as a recursion, the computation will actually build response time

tables for larger tasks 'bottom up', starting with task sl in the second part of the equation. Note

that similar explanations may be given for the dynamic programming equations that appear later

in the paper. The optimal assignment of q (1 _< q _< p) processors to tasks is found by setting the

appropriate value of I as we solve for the value G;_(j, x). Suppose that i solves G:_(j, x) = _j-l(i) nu

Ga(j - 1, x - i). Then we set I(Sj, x) = (x:,..., xj_,, i), where I(Sj_ 1,2_ -- i) = (Xl,... , Xj_I).

An important consequence of Lemma 3.2 is that each function G_(j, .) (and hence each assign-

ment I(Sj, x)) is irreducible. This follows directly from the fact that equation (6) has the form

specified by equation (3). The more complex bounds on the minimum's index variable in equa-

tion (6) serve simply to keep the index i away from regions where either _3j(') or GA(j - 1, .) are

known to take value co.

If we have already solved for the minimal response time functiou G:_(j - 1, .), we may use

equation (6) to determine Ga(j, .). The cost of determining one individual G:_(j, x) value is seen to

be O(x) = O(p); the cost of determining the whole function G_(j, .) is thus O(p2), and the cost of

determining all such functions (and hence the desired response time function G:_(m, .)) is O(mp2).

The application of the above dynan:ic programming procedure, in equation (6), is illustrated

in Figure 1 (which shows the computation of GA(j, .)) for a task structure with three tasks. The

response time functions, gi(X), for the three tasks t:,t2 and t3 are taken from Table 1 and the

throughput constraint A = 1/40. Since we use tasks from Table 1, we revert to using ti for the

constituent tasks. The first colunm of the table identifies the aggregated task Sj, for 1 _< j < 3;

here S: = t:, $2 = (tl, t2) and $3 = (t_, t2, t3). A row j corresponds to the response time function

aa(j, z), for aggregated task Sj; entry [/_,l] in the table (row /_, column l) gives the value, and

the corresponding assignment, for G_(k,l). The last row shows the assignment produced by the

?

2

il,

11

(>--.©--©
t_ t2 t3

i
!

X

3 4 5 6 7 8

S1

(tl)
32

(&, t_)

11

(3)
5O

(1,2)
79

(1,1,1)

9

(4)
37

(2,2)
6O

(1,2,1)

7

(5)
30

(2,3)
47

(2,2,1)

(6)
25

(3,3)
40

(2,3,1)

4.5

(7)
22

(3,4)
35

(3,3,1)

(s)
19.5

(3,5)
30.5

(3,3,2)

Figure 1: Application of Algorithm for series tasks: Gx(j, x) for 1 _< j _< 3,1 <_ x _<8

algorithm; this assigns 3 processors to tasks tl and t2 and 2 processors to ta with minimum response

time of 30.5 and an achieved throughput of 1/14. Note that in our example above, and in all other

examples to follow, we have omitted the dummy task that is the last task executed on the data set,

since it plays no role in the computation.

The dynamic pl'ogranaming equations can sometimes be solved more efficiently, when each {/i has

an irreducible minimum at zi, and each zi is small relative to p. Suppose zi <_ L for all i = 1,..., m.

We next show how the optimality equations can be solved in O(m2L 2) time. This is advantageous

when L < O0,/vaZ).

Aswe solve for each G.\(j, k), Remark 3.1 also tells us that we need not consider assigning any

more than zj <_ L processors to sj. This means we can rewrite the optimality equations as

• (_o if u.x(sj) + ua(&__) > x

o_,(j,z) = / Ol(x) ifj = 1 and ua(sl) <_ xrain {gj(i) + G_(j - 1, x - i)} otherwise.

(r)
The complex lower bound on i prohibits indexing values of i such that '--qj-1 cannot meet the through-

put constraint, and vaJues indexing beyond Sj's known minimum. Thus, the cost of computing

J
Ga(j, x) is only O(L). Since we need only COlnpute Ga(j, k) for x _< _i=1 zj, the cost of computing

c_(j, .)i_ o(j,52), so that the cost of solving the overall problem is O(_=2 jL 2) = O(m252).

4.2 Parallel Tasks

In this subproblem, we have a sequence 5' of tasks sl,..., sm with irreducible response-time func-

tions gl,..., g,_ for which we need to determine the irreducible optimal response-time function h(x)

12

for the maximum where

h(x) = rain
XlT.,,_Xm

xi +...+xm =x

In tlfis case, the function H (in Lemrna 3.2) is the maximum operator. The basic idea behind the

algorithm is that after processors are allocated to meet the throughput requirement, we can only

drive the maximum response time down by allocating a processor to the task whose response time

under the present allocation is maximal. This process is repeated until the maximum number of

needed processors is allocated. This idea is now made more precise.

Suppose that the irreducible minimum of each gi occurs at zi, and let Zh = _i_=1 zi. First,

observe that the response time function value at all processor counts smaller than t = _ u,\(si)

is co. Thus, for i = 1,..., m, we begin by assigning u_(sl) processors to task sl. This is also reflected

in the initialization of the data structure recording assignments, as [(S, t) = (u_(s_),..., U,\(Sm)).

Set h(x) = oo for x = 1,...,t - 1, and h(t) = maxl<i<m{gJi(u;_(si))}. Next build a max-priority

heap on the tasks, where _(u_(si)) is the priority for task si. Let x = t + 1, and enter a loop where

the following is performed for at most Zh -- t iterations.

• Give an additional processor to the task whose priority is greatest. Let y_ be that maximal

priority.

• If that task (say si) was previously assigned xi processors, and if xi = zi, then terminate the

algorithm.

• If that task (say si) was previously assigned xi < zi processors, reset its new priority to

_i(xi + 1). Set I(S,x) = (xl,...,xi + 1,...,Xm), where I(oc,x- 1) = (x,,...,xi,...,xm).

• Adjust the max-priority heap to reflect the task's new priority, and set h(x) to the maximum

vMue in the heap.

• Increment x.

If the loop terminates with x = y, then set h(z) = h(y - 1) and [(S,z) = I(S,y- 1) for all

Z= y,...,p.

The termination condition follows from the observation that if si has the maximum response

time but already has z/ processors assigned, no further assignment of processors to sl can reduce

its response time. Since the objective function is the maximum response time among tasks, that

objective function cannot be further reduced. It is clear then that the procedure we describe

constructs an irreducible function. The algorithm's correctness is established with the following

lemma.

Lemma 4.1 For every x = t,...,p, h(x) = h(x) = y_.

13

=-

=

m

N

B

=_

Proof: For every i = 1,...,re, let Si = {0i(x) I x = u_(si),...,zi} be the set of feasible response

times for sl following its initial assignment, and let $ = U_=1Si. Since the objective function

value for an assignment is the maximum response time under that assignment and since we

stop assigning processors once the objective function can no longer be minimized, S contains

every value of y_ generated by our algorithm. Furthermore, the sequence Y_,Yt+I,..., de-

scribes the elements of ,5 in descendifig order. Now if an assignment is to achieve cost Yz,

the response time of every task must be no greater than y_. We argue that our algorithm

finds an assignment achieving cost y_, using the minimum number of processors. For every yi

let T(yi) be the task from whose response-thne function Yi is taken. Our algorithm allocates

an additional processor to T(y_), then another to T(y2), and so on. For every x = i,...,Zh

and j = 1,..., m let Pj(x) be the number of elements y_ with a < x for which T(y_) = sj.

Pj(x) is thus the number of additional processors our algorithm has allocated to sj by the

(x - t) th pass through the loop, and is also the minimum number of additional processors

(after ux(sj)) that sj must be assigned if its response is to be no greater than y_. As this is

true for every task for every y_, it follows that the assignment generated by our algorithm

achieves each cost y_ with the minimum number of processors. The Iemma's conclusion is a

restatement of this fact. |

Since the algorithm's loop is executed at most z h -- t times, the overall cost of the algorithm is

O(m log m + zh log m). The optimal assignment is found in I(S, p). An example of the application

of this algorithm is shown in the next section; in Figure 2 the row for B1 shows the response time

function (and the corresponding assignment) of a parallel task composed of tasks tl and t_.

While the problems studied in this paper are distinctly different from those addressed in the

literature, a closer look reveals that the above algorithm (for parallel tasks) is a generalization

of the algorithm independently conceived in [27]. While they address the problem of finding a

nonpremptive schedule for a set of n independent tasks, i.e., parallel tasks, their algorithm in fact

finds an assignment which satisfies the feasibility conditions of our problem. Our algorithm is a

generalization in the sense that they do not "construct" a reduced response time table for the entire

parallel task that provides the response time as a function of the number of processors. This is

essential for our solution technique which views complex task structures as composition of simpler
task structures.

5 Complex Tasks

The algorithms we have developed to analyze series and parallel task structures can be used to

analyze task-structures whose graphs form trees, or series-parallel graphs. We now show how the

response time flmction for a tree task with n nodes and arbitrary branching is computed in O(np _)

time, and how a series-parallel task .with arbitrary branching is analyzed in O(np 2) time. Note that

the complex tasks we consider usually determine a whole pipeline computation and thus, we will

14

henceforthusen (as in Section 2) to denote the number of nodes ill the task graph. Series-parallel

graphs arise frequently in applications where data in a set is split, processed separately, and then

rejoined. The basic idea behind our algorithms is that these complex structures can be viewed as

a composition of series and parallel tasks, thus facilitating the use of the algorithms designed thus
far.

5.1 Tree Tasks

Suppose the precedence graph for 7) forms a tree with n nodes. Either out-trees (edges directed to

child nodes) or in-trees (edges directed to parent node) are permissible. Without loss of generality

(because path lengths are unaffected by are direction) our discussion will concern out-trees.

For notational convenience we assume that every non-leaf node has exactly b children; our

approach extends immediately to the genera] case. For every task sj, let Cj,x,...,Cj,b be sj's

children, sj is the root of a subtree which can be viewed as a subtask Tj with its own response

time function. Dynamic programming again expresses the optimal response time function for each

Tj. The optimal response time function for T1 is the overall problem solution.

Let GA(j, x) be the optimal response time achievable by Tj when subject to throughput con-

straint A. Let 2" be the set of interior tree tasks, and/2 be the set of leaf tasks. The principle of

oi)timality states that

{5(G_(j, x) = rain Xo) + max
x0,...,Xb 1 <i<b

xo+...+xb=k

if sj E 17.and u_(sj) > x
otherwise.

The formidable recursive expression simply takes the minimum cost over all possible partitionings of

k processors among sj and the b subtrees rooted in its children. Fortunately, the results developed

in Section §4 may be employed to solve this equation efficiently. The subtasks %1 through cj,b form

a single paralleltask, B. The algorithm developed in the previous section constructs/3's irreducible

response time function in O(plogb) time. Next we can view Tj as a series task, composed of sj

and B. Given B's response time function, Tj's irreducible response time function is computed in

O(p 2) additional time using the algorithm described in Section _4.1. Thus, the cost of computing

the serial composition dominates. The complexity of computing response time functions for all Tj

where sj C Z is O(_jezp2). Note however that b[Z[= n, which implies that the total cost of

processing interior tasks is O(np2/b). Since the cost of processing all leaf tasks is O(n), the total

cost in the general case is O(np2/b).

The procedure is illustrated by the example in Figure 2, a tree with 5 constituent tasks; here

A = 1/40. The tasks tl,t2 form a parallel task, denoted 171; B1 and t3 form a series task, denoted

T3. Similarly, the aggregate task T3 and t4 form a parallel task B2; B2 and ts form a series

task 7'5 whose response time gives us the response time of the entire task. Note that the tasks

tl,..., t5 are taken from Table 1. Each row of the table shows the response time assignment for

the corresponding aggregated task. The minimum response time achieved by the assignment is 41

15

t5

task x

aggregates 5 6 7 8

B1 16 14 11 11

(tl, t2) (2,3) (3,3) (3,4) (4,4)

T3 31 26 21.5 19.5

(t3, B1) (2,2,1) (2,3,1) (2,3,2) (2,3,3)
B2 39 31 26 21.5

(t4, T3) (1,2,1,1) (2,2,1,1) (2,3,1,1) (2,3,2,1)

Ts 65 54 46 41

(t5,B2) (1,1,1,1,1) (1,2,1,1,1) (2,2,1,1,1) (2,3,1,1,1)

Figure 2: Application of Algorithm for Tree Structures

(by assigning 2 processors to tl, 3 to t2 and one processor to each of the other three tasks) and the

achieved throughput is 1/20.

Better complexities are achievable when the irreducible minima zi for each sj satisfy zi <_ L

where L << p. The computation of B's response time function is fast--O(bL logb) time. For sj + B,

let ZT_ be the sum of the zi values for all nodes in the subtree rooted in sj. Since we need not

consider any assignment that gives more than zj processors to sj, the response time function for

sj + B is computed in O(zr_L) time. This cost dominates that of computing B's response time

function, provided that blogb < L, which we will assume here for simplicity.

The total cost of analyzing the tree is maximized when each XTj is as large as possible. This

occurs when the tree is actually just a linear chain, in which case XT,, = L, XT,__ = 2L, XT,__2 =

3L, and so on. As we have seen, the total cost is then O(n2L2). The best topology is a full tree;

for example ,cons!tier a full binary tree. A subtree Tj consisting of exactly 3 tasks has XTj <_ 3L,

and an analysis cost of 0(3L2). n/2 such subtrees are analyzed. Then, n/4 subtrees are analyzed

where xs <_ L + 3L + 3L = 7L. Each of these requires O(TL _) time to analyze. Continuing in this

16

fashionwedeterminea complexityboundof

log n rt •

0(_ _(2 '+1- 1)L 2)
i=l

= O(L2nlog n).

5.2 Series-Parallel Tasks

Finally, we consider series-parallel task graphs. We show that the response time function for such

a graph (with n nodes) can be computed in O(np 2) time. A number of different but equivalent

definitions of series-parallel graphs exist. The one we will use is taken from [42], which studies

vertex series-parallel DAGs. However, based on their results on the equivalence of edge series-

parallel DAGs and vertex series-parallel DAGs, we use the term series-parallel to mean both cases

and use their definition of vertex series-parallel DAGs. A series-parallel DAG (SP) is defined

recursively as follows.

1. (i) The DAG having a single vertex and no edges is SP.

2. (ii) If G1 = (VI, El) and G2 = (172, E2) are two SP DAGs, so are the SACs constructed by

each of the following two operations:

(a) Parallel composition: Gp = (1/'1tOV2, EI O E2).

(b) Series composition: G, = (V1 U I/2, E_ O E2 O (T1 x $2)), where T_ is the set of sinks of

G1 and $2 is the set of sources of G2.

A node ti in G = (V, E) is a sink if there are no outgoing edges from ti, i.e., there is no edge

(ti,tj) in E. A node ti is a source if there are no incoming edges to the node, i.e., there is no edge

(tj, t_) in E. It is shown in [42] that any SP DAG can be parsed as a binary decomposition tree

(BDT). Figure 3 illustrates a series-parallel graph, and the BDT that represents the graph. The

internal nodes are labeled Si or Pi to denote the series or parallel composition. There is a one-to-one

correspondence between BDT leaves and DAG nodes. Each internal BDT node a represents either

a series (labeled S) or parallel (labeled P) composition of two SP subgraphs represented by the

subtrees rooted in a. For example, suppose a's subtrees are simply leaf nodes. The corresponding

nodes in the DAG are SP graphs, composed by the operation specified in a's label, a can be thought

to be representing that composition. Now if a's BDT parent is some node q and q has another

child a', then we know that a' represents an SP subgraph of the original DAG, and q represents

the series or parallel composition of the subgraphs represented by a and by a'. A BDT thus shows

the selection and ordering of compositions necessary to establish that the original DAG is SP with
respect to the definition above.

There is an obvious correspondence between SP compositions and the methods we have devel-

oped to compute response time functions for series and parallel task structures. If we think of an

SP DAG's nodes as representing tasks, a series composition corresponds to the aggregation of two

tasks into a series task structure: two tasks are replaced by one, and the serial edge between them

17

tl t2

(a) A series-paraliel graph

$2 .

S: t'2

P: t3 t4 t5

tl t2

(b) Binary decomposition tree

Figure 3: A Series-Parallel Graph and corresponding BDT

I8

Task aggregates

P1
parallel:(tl, t2)

S1

serial:(pl, t3)

P2
paralleh(t4, ts)

G= $2

serial:(sl,p2)

16

(2,3)

31

(2,2,1)
10

(3,2)

Number of processors
6 7

14

(3,3)
26

(2,3,1)
10

(3,3)

11

(3,4)

9

(4,3)

11

(4,4)
19.4

(2,3,3)
8

(5,3)

Table 2: Computation of Response times for series-parallel structures

disappears. Similarly, a parallel composition corresponds to the aggregation of a set of tasks into a

parallel task structure. It is thus quite straightforward to construct the response time function for

a series-parallel graph, once the associated BDT is known. Starting with the individual tasks' re-

sponse time functions, we compose response-time functions in the order specified by the BDT. The

response time functions created during intermediate steps represent aggregate subtasks in much

the same way as task Tj represented an entire subtree in Section §5.1. Likewise, the optimal as-

signment is recovered by backtracking through intermediate optimal assignments in the same way
as was described for trees.

An application of our procedure, for the series-parallel graph in Figure 3, is shown in Table 2 for

throughput constraint A = 1/40. Each row shows the response time function, and corresponding

assignment, for the aggregate task formed by a series or parallel composition. For example, the

row labeled 5'1 corresponds to the aggregate task formed by the series composition of P1 (which is

a parallel composition of t I and t2) and t3. The minimum response time in the above assignment

is 46 (assigning 2 processors to tl, 3 to t2 and one processor each to t3,t4 and ts) and the achieved

throughput is 1/20.

Once tlm BDT is known, the cost of determining the optimal assignment is O(np2), as every

response-time function composition has cost O(p2); there are at most n such compositions per-

formed. As we have seen before, the cost is reduced to O(L%tlog n) when the irreducible minima

zl for each si satisfies zl _< L. It is shown in [42] that a BDT can be constructed time proportional

to the number of edges which is O(n 2) time. Since we assume n < p, the O(np 2) analysis cost
dominates the procedure.

6 The Throughput Problem

In computations where the input data rates must be maximized to handle real time constraints, the

objective of the system is to achieve a high tllroughput. Typically, there is a limit on the amount

19

of time the systemcan take to processa singledata set, i.e., the response time. Under these

conditions the objective of an assignment becomes maximization of the throughput subject to a

specified response time requirement. We have referred to this problem as the throughput problem.

In this section we show how solutions to the response-time problem can be used to solve the

throughput problem. If one can solve the response-time problem for a given pipeline computation

in O(C(n,p)) time, then one can solve its throughput problem in O(nplog(pn)+ log(np)C(n,p))

time.

Our approach depends on the fact that minimal response times behave monotonically with

respect to the throughput constraint.

Lemma 6.1 For aT_y pipeline computation 7:' =< K,T, F, G >, let p(A) be the minimal possible

response time of P, given throughput constraint A. Then p(,_) is a monotone non-decreasing function

erA.

Proof: Recall that u),(ti) is the minimum number of processors required for task ti to meet

throughput constraint)`. For every ti, ux(ti) is clearly a monotone non-decreasing function of

A. Call an assignment A ,k-feasible if, for all i = 1,...,n it assigns at least ux(ti) processors

to ti. FinMly, let A_ be the set of all),-feasible assignments. Whenever),1 <),2, we must

have Ax2 C_ A.h , because of the monotonieity of each ux(ti). Since p(),) is the minimum cost

among all assignments in A.\, we have p(,k2) _< p(A_). |

This result can be viewed as a generalization of Bokhari's graph-based argument for monotonicity

of the minimal "sum" cost, given a "bottleneck" cost [5].

Suppose for a given pipeline computation we are able to solve for p()`), given any),. The set of

all possible throughput values is {1/fi(k) l i = 1,..., n; k = 1,...,p}; O(pnlog(pn)) time is needed

to sort them. Now suppose a response time constraint/3 is given. For any given throughput ,_ we

may compute p(),), and determine whether p(A) _</5. p()`) is monotone in)`, which permits us to

perform a binary search over the sorted space of throughputs and identify the greatest one, say)`*,

for which p(),*) _< p. The assignment associated with p(),*) is the one maximizing throughput using

p processors, subject to response time constraint ft. If the cost of solving one response-time problem

is O(C(n, p)), then the cost of solving the throughput problem is O(pn log(pn) + C(n, p)log(pn)).

Lemma 6.2 Let 7.) be a pipeline computation, and suppose that the complexity of solving the

response-time problem for P is O(C(n,p)). Then the complexity of solving the throughput problem

foF is O(p, log(p,O +

When solving the response time problem, we typically compute an entire response time function,

which essentially gives the "answer" (minimal response time) for a whole range of processors. When

we solve the throughput problem in the manner just described, we compute a single answer, for a

single process0r.count. If we desire a range of throughputs for a range of processors, we need to

repeat the procedure above once for every processor count.

2O

E

|

i

II

i

|

i

i

0--0-0-0-0--0-0-0-0
tl t2 t3 t4 t5 t6 t7 t8 t9

Figure 4: Computation Flow for Motion Estimation

The complexity of the algorithms for the throughput problem are seen to be higher, by a

logarithmic factor, than those for the response time problem. For example, the complexity for serial

task structures is seen to be O(np 2 log np 2) = O(np 2 logp) which has increased by a logarithmic

factor. Future endeavors include the pursuance of more efficient algorithms for the throughput

problem.

7 An Application

In this section we illustrate our methods by considering an application requiring pipelined execution

- a motion estimation system in computer vision. Motion estimation is an important problem in

computer vision in which the goal is to characterize the motion of moving objects in a scene. ;From

a computational point of view, continually generated images from a camera must be processed by

a number of tasks. In order to process the images (data sets), throughput and response time

"constraints are imposed on the tasks and therefore, the appropriate model of computation is a

pipeline computation. The application itself is described in detail in [11, 28] It should be noted

that there are many approaches to solving the motion estimation problem. We are only interested

in an example, and therefore, the following algorithm is not presented as the only or the best way to

perform motion estimation. A comprehensive digest of papers on the topic of motion understanding

can be found in [31]. The following subsection briefly describes the underlying computations.

7.1 A Motion Estimation System

Figure 4 shows the task structure of our motion estimation system [11] - a linear task structure.

The data sets input to the task system are a continuous stream of stereo image pairs of a scene

containing the moving vehicles. The required output is a list of 3-dimensional points (or features)

that describe the motion at each time step.

The system consists of nine major tasks:

1. Task tl. The first task performs 2-D convolution on the input image pair. The convolution

window size is an image-size independent input parameter.

2. Task t2. The second task extracts the zero crossings of the convolved image using a thresh-

olding a.lgorithm. Zero crossings represent edge features in the image.

3. Task t3. The third task fits patterns to the edge features by using a template matching

algorithm. There are 24 possible patterns that can be fit to an edge [21].

21

. Task t4. The fourth task performs a stereo match algorithm to match features fl'om the left

and right images of the same time frame [28]. To find a match for a feature in the left image

from the right image, weighted sum of the correlation coefficient and the directional difference

weight between the feature in tile left image and for all the features in the search space of

the right image are calculated. The feature in the right image that has the maximum total

weight is considered as the matched feature. Details are provided in [28, 11].

5. Tasks t5,t6 and tr. These are similar to tl, t2 and ta respectively except that the algorithms

are applied to stereo images separated in time by wider margins, depending on the desired

accuracy for estimation.

6. Task ts. This task performs a time match algorithm between matched features of the left

hnage obtained fl'om t4 and. features of the left image obtained from t7. The time match

process is sinfilar to the stereo match process except for the fact that first stereo match

guides the time match process and the search space for the time match algorithm is much

larger.

7. Task tg. Finally, the ninth task performs a second stereo match between the left and right

images of tile stereo images from later time frames. The output of t9 is a set of 3-D feature

points that describe the motion of an object between the two time frames.

All nine tasks are repeated for image inputs obtained continuously. [n order to represent real-time

motion estimation at video frame rates the entire process must be completed in 0.0333 seconds.

The hnage Understanding Benchmark [43] has a similar structure of computation flow several

task_ mus_ be lmrk, rm,A in a sequence in order to recognize an object in the scene and find the

model that best describes the object.

7.2 Shared and Distributed Multiprocessors

All nine tasks were implemented on a distributed memory machine, tile Intcl iPSC/2 [7] and

a shared memory machine, the Encore Multilnax [15]. The Intel iPSC/2 is a circuit-switched

hypercube multiprocessor. We used a 32 node]PSC/2 machine. Each node consists of an intel

80386 processor and a floating point co-processor together with 4 Mbytes of RAM and and 64

Kbyte cache. The Encore Multimax 520 is a bus based system installed with eight dual processor

cards. Each dual incorporates two NS32532 processors each with its of own 256 Kbyte cache of fast

static RAM. It has 128 Mbytes of shared memory.

7.3 Implemelltation Results for Individual Tasks

We implemented the tasksystem described above using outdoor images [11]. Several methods for

implementing ea.ch algorithm (e.g., block partitioning, dynamic partitioning [11]) were used; for

each task, we have selected the best performance numbers from these alternatives. The completion

times for each algorithm were tabulated and are shown in Tables 3 and 4. Note that for each

22

multiprocessorsize,the completiontimesincludeall the overheads,computationtime and com-
municationtime. Therefore,whenselectinga partition of processorsfor a task, the corresponding
responsethnewill includeall theoverheads,computationtimeandcommunicationtimes(including
transferringdata fl'om onetask to the next). The timesin the table areonly shownfor selected
multiprocessorsizes,althoughindividualtaskscanbeexecutedon anarbitrary nmnberof proces-
sors. Sincethe sizesof the machinesavailableto uswerelimited, for the purposesof illustration,
weextrapolatedthe completiontimesfor largermachinesasshownin the tables. Extrapolation
wasdoneusingthe immediatespeedupavailablefrom thelargestmultiprocessor.Forexample,we
computedthe speedup(percentageimprovementin responsetimes)goingfl'om 16to 32processors
for Intel iPSC/2 andthen reducedthis numberby fivepercent(the degradationin speedupin the
range8 to 32);the resultingnumberwastakenasthespeedupgoing from 32 to 64 processors. The

portion of each response time table with times for 64, 128 and 256 processors was estimated in this

manner. It should be noted that the absolute values of completion times have no impact of the

execution of the assignment algorithms proposed. If individual completion times are different, the

allocation may be different. The response time flmctions in both tables are found to be decreasing

and convex.

A basic premise of our assignment algorithms is that we can measure response time functions

of elemental tasks, then accurately compute the response time functions of aggregate tasks. The

premise was validated on this application--the measured response time function for the entire

system was found to deviate from the predicted response time function by no more than 5% at any

processor count. This accuracy is largely due to the fact that the application is compute-bound; the

colnputation-to-communication ratio is 100 to 1. Any errors introduced by our simplistic approach

to communication costs are bound to be low. The accuracy is also due in part to the fact that all

possible mappings of the pipeline were constructed to avoid shared comnmnication channels--one

can always embed a chain in a hypercube. Thus, no effects due to channel contention exist in

the measurements. It remains to see how well our approach predicts response time functions on

less COlnpute-intensive applications. Nevertheless, applications of the type we consider here are

practical, and important.

7.4 Experimental Results

7.4.1 The Response Time Problem

The algorithm for serial tasks with convex response time flmctions (in Section 4) was run using

Tables 3 and 4 for a range of desired throughput constraints. As an example of the output generated

by the algorithm, Table 5 shows the processor assignment for individual tasks for various sizes of

the Intel iPSC/2. The last row of the table also shows the minimum response time for the given

throughout constraint (,\ = 0.05 tasks/second). We observe that some throughput conditions

cannot be met by alI sizes of multiprocessors. For example, a throughput of 0.125 tasks/second

cannot be achieved for a 32 or 64 processor machine but it can be achieved for a 128 or 256

processor machine for which the minimum response time was observed to be 22.18 and 12.98

seconds respectively. Furthermore, the achieved throughput for a 128 processor machine was 0.157

23

Table3: Completiontimesfor individual taskson tile Intel iPSC/2 of varioussizes(* indicates
extrapolatedvalues)

ResponseTimesfor Individual Tasks(Sec.)
No. of Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8 Task9
Proe.

1
2
4
8
16
32
64*
128"
256*

109.0
54.76
27.51
13.88
7.07
3.78
2.12
1.25
0.77

6.15
3.07
1.58
0.81
0.40
0.20
0.11
0.06
0.04

0.32
0.16

0.081
0.042
0.022
0.012
0.007
0.004
0.002

24.67
12.52
6.32
3.22
1.76
1.01
0.61
0.38
0.26

109.0
54.76
27.51
13.88
7.07
3.78
2.12
1.25
0.77

6.15
3.07
1.58
0.81
0.40
0.20
0.ii
0.06
0.77

0.32
0.16

0.081
0.042
0.042
0.012
0.007
0.004
0.04

129.02
67.70
34.22
17.50
10.30
6.36
4.13
2.81

0.002

18.20
9.15
4.58
2.39
1.52
1.01
0.71
0.52
0.40

Table4: Completiontimesfor individualtaskson theEncoreMultimax of varioussizes(* indicates
extrapolatedvalues)

No. of

Proc.

1

2

4

8

16

32*

64*

128"

256*

Task 1

352.20

176.08

88.38

45.42

26.99
16.84

11.03

7.59

5.48

Task 2

16.54

8.33

4.26

Response Times
Task 3 Task 4

0.85 51.70

0.69 28.00

0.60 15.10

for Individual Tasks (See.)

Task 5

352.20

176.08

88.38

Task 6

16.54

8.33

4.26

Task 7

0.85

0.69

0.60

Task 8

212.00

103.77

51.70

2.14 0.32

1.23 0.20

0.74 0.13

0.47 0.09

0.31 0.06

0.22 0.05

8.70

5.00

3.01

1.91

1.27

0.89

45.42

26.99

16.84

11.03

7.59

5.48

2.14

1.23

0.74

0.47

0.31

0.22

0.32

0.20

0.13

0.09

0.06

0.05

25.98

15.23

9.37

6.06

4.11

2.93

Task 9

25.50

13.10

7.10

4.25

2.76

1.88

1.34

1.01

0.80

24 =

Table5: An exampleprocessorallocationfor minimizingresponsetime for severalsizesof iPSC/2
(MRT = Minimum ResponseTime, SpecifiedThroughput= 0.05 tasks/see.,No. of processors
allocatedto individual tasksareshown)

MultiprocessorSize(No. of Procs.)
32 64 128 256

Task Proc. Time Proc. Time Proc. Time Proc. Time
No. Asgn. (See.) Asgn. (See.) Asgn. (See.) Asgn. (See.)
1 8 13.88 16 7.07 32 3.78 64 2.12
2 1 6.15 2 3.07 8 0.81 16 0.40
3 1 0.32 1 0.32 1 0.32 2 0.16
4 2 12.52 6 4.77 8 3.22 16 1.76
5 8 13.88 16 7.07 32 3.78 64 2.12

6 1 6.15 2 3.07 6 1.19 12 0.60

7 1 0.32 1 0.32 1 0.32 2 0.16

8 8 17.50 16 10.30 32 6.36 64 4.13

9 2 9.15 4 4.58 8 2.39 16 1.52

MRT 79.87 40.57 22.18 12.98

tasks/seconds and for a 256 processor machine the achieved throughput was 0.242 tasks/seconds.

Figure 5 shows the optimal response time function for the entire pipeline computation together

with the achieved throughput using the hypercube data. As we might expect, the response time

function is decreasing and the achieved throughput is increasing. Figure 6 shows response times for

specified throughput of A = 0.05 tasks/second for different hypercuhe sizes. Along with the response

time function from Figure 5, two curves are shown to provide a comparison with non-opthnal, yet

simple, heuristics for processor assignment. The first heuristic, called the equal allocation heuristic,

allocates an equal number of processors to each task, thus ignoring the response time functions of the

individual tasks (this takes O(n) time). The second heuristic, called the ratio heuristic, attempts

to take these functions into account through the use of ratios: initially each task is assigned a

processor; the remaining processors are distributed in proportion to the quantities fi(1), 1 < i < n

for each of the n tasks (requiring O(n) time). Our optimal algorithm (O(nlogp)) always achieves a

lower response time than the two simple O(n) heuristics. Comparing the achieved throughputs in

Figure 7, it can be observed that the ratio heuristic achieves higher throughput than the optimal

a lgorithnl because it does not tradeoff throughput for achieving the minimum response time, i.e.,

the heuristic is not guaranteed to satisfy the response-time constraint. The equal allocation strategy

performs rather poorly as one might expect.

The tradeoff of response time versus throughput constraint (using optimal response time time-

tions) is studied in Figures 8 and 9 for a 128- and 256-processor hypercube. Figure 8 shows the

response time and Figure 9 shows the corresponding achieved throughput as a function of the

specified throughput. As we can observe, the response time curve follows the throughl)ut curve

25

response time

achievied throughput
80 0.3

6O

,o'° O.,o.,i

0 • i ' t 0.0
0 100 200 300

no. of processors

Figure 5: Response Time Problem: Response Time and Achieved Throughput

140 -

120

1O0

•-_ 80

eo
40

I

20

Compadson of response times for

specified throughput=O.05, for
different allocation algorithms

| i i • ,,,, | i i|l •

0 100 200 300

number of processors

opt. algo.

ratio heur.

equal alloc.

Figure 6: Response Time Problem: Comparison with heuristics

26 =

0.3

0.0
0 300

Comparison of achievedIhroughputsfor
specifiedthroughput--O.05,for
different allocation algorithms

..... i • I " • " -

100 20O

no. of processors

----m--- opt. algo
; ratio heur.

-- equal alloc.

Figure 7: Response Time Problem: Achieved throughputs for heuristics

30 I

Comparison of response times for

128 and 256 processor hypercubes

.t
2O

10
0.0

- ¢ - P=128

- ; - P=256

vv ¢ 41,vv v v

1 I i " •

0.1 0.2 0.3 0.4

specifi_through_t

Figure 8: Response Time Problem: Response time with increasing throughput constraint

27

0.4

Comparison of achieved throughputs
for 128 and 256 processor hypercubes

0. 1 T I ' . I I

0.0 .0.1 0.2 0.3

specified throughput

0.4

P=128

P=256

Figure 9: Response Time Problem: Achieved throughput with increasing throughput constraint

200

IO0

response time and ach. throughput for

specified ihroughput=O.0125
for Encore

0 w I • I

0 100 200

no. of processors

0.10

0.08 ¢

0.06 i

'0.04

0.02

0.00

3OO

Figure 10: Response Time Problem: Results for Encore

28

response time

ach. throughput

=

0.4

0.3

0.2

0.1

0.0

throughput

• , achieved response time

I " ! i 0

100 200 300
no. of processors

1oo

8o

60

,4o

- 2o

l

Figure 11: Throughput Problem: Throughputs and achieved response times

in shape; this clearly indicates that the algorithm trades off response time to achieve the specified

throughput. This is exemplified at high throughput constraints where the minimum response time

increases significantly in order to achieve the specified throughput. For low values of specified

throughput, the change in minimum response time is insignificant because the throughput can be

achieved easily with the given number of processors. For a larger system the knee of the curves

shifts to the right as expected due to the additional resources (as shown for a 256-processor system).

Finally, Figure 10 plots the response time as a function of the number of processors for the Encore

data. The graph is seen to closely resemble Figure 5. To avoid repetition, we do not show further

results for the Encore.

7.4.2 The Throughput Problem

Figure 11 illustrates tile maximum throughput obtained and the corresponding achieved response

time for our task system when the specified response time p = 100 seconds. The results generated

by the two heuristics described earlier are presented in Figure 12. The optimal algorithm generates

higher throughputs than achieved by the two heuristics. Figure 13 shows the achieved response

times when using the heuristics. The ratio heuristic achieves a lower response time than that by

the optimal algorithm because it does not necessarily satisfy the throughput constraint.

The tradeoff between response time and throughput is shown once again, this time in the con-

text of the throughput problem, in Figures 14 and 15 for 128 and 256 processor hypercubes as a

function of the specified response time. The solid line shows the maximum possible throughput

when there is no response time constraint. Therefore, for any specified response time, the differ-

ence between the maximum throughput and unconstrained maximum throughput represents the

amount of throughput tradeoff to achieve the specified response time. Furthermore, we can observe

that a.s the specified response time increases, the difference between the unconstrained maxinmm

29

J=

0.4

0.3

0.2 ¸

0.1

0.0

Comparison of max. throughput of
different allocation algorithms for
specified_ time=tO0

-----IP---

It

I !

100 200 300

no. of processors

opt.algo.

ratio heur.

equal alloc.

Figure 12: Throughput Problem: Throughputs obtained by heuristics

comparison of achieved response dmes
of different allocation algorithms for

100 " responsedm_lO0 I
I8O

I '°
20

0
0 100 200 300

no. of processors

opt. algo.

ratio heur.

equal alloc.

Figure 13: Throughput Problem: Achieved response times for heuristics

3O

C

=

m

0.4

0.3

0.2

0.1

Comparison of throughputs for
128 and 256 processor hypercubes

........... max unconstrainedthroughput

S ,_vvv _

v 'v v

P=128

8 , P=256

max. tmconJtraJned throughput T

I

0 20 30

specified response time

Figure 14: Throughput Problem: Maximum throughput with increasing response time constraint

throughput and throughput reduces because of the weakening of the response time constraint. Be-

yond a certain point, the response time constraint is so weakened that the maximum unconstrained

throughput is achieved as shown by the plateau in the throughput curve. This phenomenon is also

observed iu functional pipelines in processor designs where inserting delays in the pipeline stages

results in higher throughout at the cost of response time [26, 34, 40].

8 Summary

In this paper we have formulated the problem of optimizing the performance of a pipeline computa-

tion, represented by a task structure, on a parallel architecture, given a large supply of processors,

and the experimentally determined response time functions for its constituent tasks. Unlike prior

treatments of the mapping problem we considered the case where there are many more processors

than tasks and where tasks are not queued or scheduled. We considered the dual problems of min-

imizing response time subject to a throughput constraint, and maximizing throughput subject to

a response time constraint. As we observed in our sample application, these problems are compli-

mentary, in the sense that allocation to increase throughput may have the side effect of increasing

response time, and vice versa.

The problem posed in this paper was shown to be solvable in polynomial time for a useful class

of task structures. Specifically we presented O(np 2) algorithms (where n is the number of tasks

and p is the number of processors), for the response time problem, for the cases where the task

structures are linear, tree-structured and series-parallel graphs. The algorithms designed for the

response time problem can be used to solve the throughput problem with a.n additional logarithmic

factor in complexity. To place the work in a realistic setting we considered an application, stereo

image matching on two parallel architectures, and evMuated the performance of our a.ssignment

.... 31

3O

2O

10

Comparison of achieved response limes

for 128 and 256 processor hypercubes

0 20 30 40

specified re.RxxL_etime

ca P=128

¢ P=256

Figure 15: Throughput Problem: Achieved response times with increasing response time constraint

algorithms. Future endeavors include the provision of algorithms for general task structures and

investigation of faster and parallelized assignment algorithms.

References

[1] M.J. Berger and S. II. Bokhari. A partitioning strategy for nonmliform problems on nmltiprocessors.
IEEE Trans. on Computers, C-36(5):570-580, May 1987.

[2] F. Berman and L. Snyder. Oll mapping parallel algorithms into paralM architectures. Journal of

Parallel and Distributed Compuling, 4:439-458, 1987.

[3] J. Blazewicz, M. Drabowski, and J. Welgarz. Scheduling multiprocessor tasks to minimize schedule

length. IEEE Trans. on Computers, C-35(5):389-393, May 1986.

[4] S. H. Bokhari. A shortest tree algorithm for optimal assignments across space and time in a distributed
processor system, tEEE Trans. on Soft. Eng., SE-7(6):583-589, Nov. 1981.

[5] S. II. Bokhari. Partitioning problems in parallel, pipelined, and distributed computing. IEEE Trans.
on Computers, 37(1):48-57, January 1988.

[6] S. Bollinger and S. Midkiff. Heuristic Technique for Processor and Link Assignment in Multicomputers.

[EEE Trans. on Computers, 40(3):325-336, March 1991.

[7] L. Bomans and D. Roose. Benchmarking the iPSC/2 tlypercube Multiprocessor. Concurrency: Prac-

lice and Experience, 1(1):3-18, Sept. 1989.

[8] M.Y. Chan and F.Y.L. Chin. On embedding rectangular grids in hypercubes. IEEE Trans. on Com-

puters, 37(10):1285-1288, October 1988.

[9] M. Chen, and K.G. Shin, Processor Allocation in an N-Cube Multiprocessor Using Gray Codes. tEEE

Trans. on Computers, C-36(12):1396-1407, December 1987.

[10] II-A. Choi and B. Narahari, Algorithms for Mapping and Partitioning Chain Structured Parallel

Computations. Tp appear in 1991 [nlernational Conference on Parallel Processing.

32

[11]A.N.ChoudharyandJ. II. Patel.ParallelArchitecturesandParallelAlgorithmsforIntegratedVision
Systems.Kh_wer Academic Publishers, Boston, MA, 1990. Video images obtained fi'om tile Army
Research Office.

[12] E. Denardo. Dllnamic Programming: Models and Applications. Prentice-IIall, Englewood Cliffs, NJ,
1982.

[13] J. Du and Y-T. Leung. Complexity of Scheduling Parallel Task Systems. SIAM J. Discrete Matl_.

2(4):,173-487, November 1989.

[14] S. Dutt and J.P. tIayes Subcube Allocation in tIypercube Computers. IEEE TraT_s. 071rComp_ters,

40(3):341-352, March 1991.

[15] Encore Computer Corp. Promotional Literature. Marlborough, MA. 1986.

[16] G. Fox, M. Johnson, G. Lyzenga. S. Otto, a. Salmon and D. Walker. Solving Problems on ConcurreT_t

Processors (Vol. I aT_d iI). Prentice IIall, Englewood Cliffs, NJ, 1990.

[17] G. Fox, A. Kolawa, and R. Williams. The implementation of a dynamic load balancer. Techmcal

Report C3P-287a, Caltech, February 1987.

[18] J. P. IIayes, 2". N. Mudge, Q. F. Stout, and S. Colley. Architecture of a hypercube supercomputer.

Proc. of the 1986 International Co_ference on Parallel Processb_g.

[19] C.-T. IIo and S.L. Johnsson. On the embedding of arbitrary meshes in boolean cubes with exl)ansion

two dilation two. In Proceedb_gs of the 1987 Int'I CollfereTzce oa Parallel Proccssb_9, pages 188-191,
August 1987.

[20] E. Ilorowitz and S. Sahni. Fu_dameTztals of Computer Algorithms , Chapter 2, Colnputer Science Press,

Maryland, 1985.

[21] A. IIuertas and G. Mediono. Detection of intensity changes with subpixet accuracy using Laplacian-
Gaussian masks. [ERE Trans. PAMI, PAMI-8 pp. 651-664, Sep. 86.

[22] O.II. Ibarra and S.M. Sohn. On mapping systolic algorithms onto the hypercube. IEEE Tra_s. on

Parallel and Distributed S_lstems, 1(1):48-63, January 1990.

[23] M. Jeng and H.3. Siegel. A distributed management scheme for partitionable parallel computers. IEEE

Trans. Parallel and Distributed Sgslems , 1(1):120-126, January 1990.

[24] R. Kincaid, D.M. Nicol, D. Shier, and D. Ridlards. A multistage linear array assignment probleln.

Ol_erations Research, 38(6):993-1005, November-December 1990.

[25] C.-T. King, \V.-II. Chou, and L.M. Ni. Pipelined data-parallel algorithms, lEEK TraT_s. on ParaUcl

a77d Distributed Systems, 1(4):470-499, October 1990.

[26] P. M. Kogge. The Archilcct_tre of PipcIbzcd Computers. McGraw Hill, New York, 1981.

[27] R. I(rishnalnurti and Y.E. Ma. The processor partitioning problem in sl)ecial-purpose partitionable

systems. Proc. 1988 IaternalioT_al Co_lference o_ Parallel Processil_9, Vol. 1, pp. -13,t-443.

[28] M. I(. Leung and T. S. IIuang. Point matching in a time sequence of stereo image pairs. TechT_ical

Report, CSL, University of Illinois, Urbana-Champaign, 1987.

[29] L. Li and K.II. Cheng. Job scheduling in partitionable mesh connected systems. Proc. 19}9 [_ier_a-

tio_zal Co_ference on Parallel Processi_ 9.

[30] A.W.Marshall and I.Olkin, Inequalities: Theor_l of Majorizalion and Its ApplicatioT_s, Academic Press,
1979.

33

[31]W.N.MartinandJ.K.Aggarwal(editors).Motion Understanding, Robot and Human Vision. Kluwer

Academic Publishers, Boston, MA 1988.

[32] R.G. Melhem and G.-Y. IIwang. Embedding rectangular grids into square grids with dilation two.

IEEE Trans. on Computers, 39(12):1446-i455, Decenlber 1990.

[33] D.M. Nicol and D.R. O'IIallaron. hnproved algorithms for mapping parallel and pipelined computa-
tions. IEEE Trans. on Computers, 40(3):295-306, March 1991.

[34] J. It. Patel and E. S. Davidson. Imroving the Throughput of a Pipeline by Insertion of Delays.
Proceedings of the Third Annual Computer Architecture Symposium, pp. 159-163, 1976.

[35] P. Sadayappan and P. Ercal. Nearest-neighbor mapping of finite element graphs onto processor meshes.

IEEE Trans. on Computers, 36(12):i408--1424, December 1987.

[36] D.S. Scott and R. Brandenburg. Minimal mesh embeddings in binary hypercubes. IEEE Trans. on

Computers, 37(10):1284-1285, October 1988.

[37] II. J. Siegel, L. J. Siegel, F.C. Kemmerer, P.T. Mueller,Jr., II.E. Smalley, and S.D. Smith. PASM :
A partitionable SIMD/MIMD system for image processing and pattern recognition. IEEE Trans. on

Computers, C-30(12), December 1981.

[38] C.V. Stewart and C.R. Dyer. Scheduling Algorithms for PIPE (Pipelined hnage-Processing Engine).

Journal of Parallel a_d Distributed CompuliT_g, 5:131-153, 1988.

[39] II. Stone. Multiproeessor scheduling with the aid of network flow algorithms. [EEE Trans. on Soft.

Eng., SE-3(1):85-93, January 1977.

[40] It. S. Stone. Iligh-PeTforma_ce Computer Architecture (2nd ed.). Addison-\Vesley, 1990.

[41] D. Towsley. Allocating programs containing branches and loops within a nmltiple processor system.

fEEE Trans. on Soft. Eng., SE-12(10):1018-1024, October 1986.

[42] J. Valdes, R.E. Tarjan, and E.L. Lawler. The Recognition of series parallel digraphs. MAM J. Comput.,

11(2):298-313, May 1982.

[43] C. Weems, A. IIanson, E. Riseman, and A. Rosenfeld. An integrated image understanding benchmark

for parallel eomput.ers. Journal of Parallel and Distributed Computing. January, 1991.

=_

34

Form Approved
REPORT DOCUMENTATION PAGE OMB NO. 0704-0188

Public ?eporhng burden for this colFectiCt_ Of information _s est_rna(e_ to _verage 1 hour per _esl::_rse. including the time for rel.qew.ncj =nstruc'horls. _eat(m'rg e_st_ng clara source..

J gatheflng and maintaining the data needed, arid completlr_g and reviewing the coJlectlor_ of _nformaUon _end comments regarding this burden es(imate of _ny _ther _sDe(_ Of th_s

¢oIle'C_lon of informa_lOtL including sugg_stpons for tedUClr3g this burden to _,_ashb_c._*(Ot3 Heaclquar_ef_ Sefwces, Oire¢_otate for Information ODeratlons and ReDOt_S, t 2 I 5 Jefferson

Oav_s H_ghway, Suite 1204, _,dington, VA 22202-4302, and to the Office of Management _¢1 _udget. Paperwork Redu_ion Prc ect (0704-01B@). _ash ngton. DC 2050]

I. AGENCY USE ONLY (Leave blank) I 2. REPORT DATE

I Octobe_ 1991

4. TITLE AND SUBTITLE

3. REPORT TYPE AND DATES COVERED

Contractor Report

OPTIMAL PROCESSOR ASSIGNMENT FOR PIPELINE COMPUTATIONS

6. AUTHOR(S)

David M. Nicol, Rahul Slmha, Alok N. Choudhury,

and Bhagirath Narasami

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applicationsin Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225

9. SPONSORING/MONITORING AGENCY NAME_)AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

5. FUNDING NUMBERS

NASI-18605

505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 91-79

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-189 550

ICASE Report No. 91-79

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card

Final Report

1'2a. DISTRIBUTION / AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 61

Submitted to IEEE Trans. on Par-

allel & Distributed Systems

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum2OOwords) The availability of large scale multitasked parallel archl-

tectures introduces the following processor assignment problem for pipellned computa-

tions. Given a set of tasks and their precedence constraints, along with their ex-

perimentally determined individual response telms for different processor sizes, finc

an assignment of processor to tasks. Two objectives interest us: minimal response

given a throughput requirement, and maximal throughput given a response teim require-

ment. These assignment problems differ considerably from the classical mapping prob-

lem in which several tasks share a processor; instead, we assume that a large number

of processors are to be assigned to a relatively small number of tasks. In this pa-

per we develop efficient assignment algorithms for different classes of task struc-

tures. For a p processor system and a series-parallel precedence graph with n con-

stituent tasks, we prevlde an O(np 2) algorlthm that finds the optimal assignment for

the response time optimization problem; we find the assignment optimizing the con-

strained throughput in O(np21og p) time. Special cases of linear, independent, and

tree graphs are also considered. In addition, we also examine more efficient algor-

ithms when certain restrictions are placed on the problem parameters. Our techniques

are applied to a task system in comDuter vision.

14. SUBJECT TERMS

mapping; pipelining; assignment; parallel processing

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified _nclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

1S. NUMBER OF PAGES

36
16. PRICE CODE

A03

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev 2-89)
Prescribed by ,._NSI Std Z39-1B

29B-102

NASA-Langley, 1991

?

i

